

New Zealand's specialist land-based university

Quantitative value chain approaches for animal health and food safety

Karl M. Rich (Lincoln U./LUCID), Kanar Dizyee (UNE & CSIRO), Huyen Nguyen Thi Thu (VNUA), Ha Duong Nam (VNUA & U. Tasmania), Hung Pham Van (VNUA), Nga Nguyen Thi Duong (VNUA), Fred Unger (ILRI-Viet Nam), Lucy Lapar (ILRI-Viet Nam)

> International Symposium on Food Safety (ISFS) New Tools to Detect and Prevent Foodborne Outbreaks from "Farm to Fork" Santiago, Chile, 7 December 2016

RESEARCH PROGRAM ON Livestock and Fish

Outline

- Motivation: why value chains, why quantitative methods?
- Method: role of system dynamics
- Example: food safety in Viet Nam
- Next steps areas for future research

Context: what role for economics?

- Economic impact assessments increasingly important in animal health/food safety
- Increased risk (globalization, trade, perceptions)
- Greater demands on scarce resources ("how to get greatest return for money?")
- How to prioritize control efforts?

Context: what role for economics?

- Focus of economic impact studies (and policy) generally at farm level.
- But impacts (and risks) exist downstream: think about roles played by traders, processors, retailers, etc.

Context: why value chains?

- Systems context actions taken by one affect all
- "Weak links" in the chain may accentuate disease risk
- But need to understand <u>who</u> these stakeholders are, <u>how</u> they interact with others, and <u>why</u> they behave as they do.

A generic livestock value chain

Where are the risks and why do they occur?

Context: why value chains in impact assessment?

- Assess impacts on different actors and feedbacks (economic, behavioral)
- Assess constraints to uptake (behavioral, socioeconomic, institutional, cultural)
- Identify critical control points: links to risk analysis

Gaps with value chain analysis

- Most applications descriptive/qualitative
- How to assess tradeoffs and returns to different options?
- Research need quantitative approaches with interfaces to epidemiology and risk analysis
- A role for system dynamics

Method

- System dynamics a computer aided simulation approach to model development and policy analysis
- A method for studying complex dynamic systems that include nonlinearities, delays, and feedback loops.
- Multidisciplinary, holistic, ability to link across disciplines (economics, epidemiology, biology, food science, etc.)

Method

Key concepts

- Stocks (accumulation)
- Flows (change overtime rate/time unit)
- Feedback loops (circular causality)
- Delays

Modular approach

Method

Why system dynamics?

- Understanding the *impact* of VC investments
 - The general *performance* of a chain
 - The ability to evaluate *ex-ante* between different options
- Conventional value chain analysis: good at stories and description, less good on measurement.

Application

System dynamics applied to food safety and animal health in Viet Nam

- Food safety and animal health: important constraints to smallholder pig production in Viet Nam
- High prevalence of animal disease and food-borne pathogens within the Vietnamese pig sector
- Important negative livelihoods effects on smallholder pig producers and other value chain actors, as well as important public health impacts

Question: where to intervene in the chain to maximize propor returns?

PigRISK project (2012-2017)

Funded by ACIAR, implemented by ILRI, VNUA, VSPH

Aim: To assess impacts of pork-borne diseases on human health and the livestock sector and identify control points for risk management.

Focus on risk based approaches Qualitative/quantitative risk assessments

Multi-disciplinary team: Vets, public health, economists, environmental specialists

Data collected: Value chain survey, biological sampling, questionnaires, participatory epidemiological tools

Use of SD to look at "best-bet" interventions

Value chain modules

The structure of the value chain

Production module

Production module

What are the *tradeoffs* between the benefits of interventions and their costs over time, taking into account market adjustments?

Demand

Use of modeling interfaces

% increase in pig weight

0.00

Additional weekly costs at farm

level

0

- 1.00

- 1000

0.00

0

Policy scenarios

% increase in

income

Death rate reduction

I. Animal health intervention

0.00

Weeks for intervention

0 52
24
20

Simulation results

Zoom for more results

99 Cumulative unit farm profits[Hung Yen, Mixed]: 1 -1: 2000000 1: 1000000. 1: 52.00 299.00 546.00 793.00 1040.00 1:43 PM Wed, Aug 12, 2015 Page 3 Weeks 8₿≯ 2 Untitled

2. Public health intervention (Hung Yen only)

% increase in slaughterhouse margin

% increase in income from better health

For illustration, we highlight two types of interventions:

(1) interventions in diseae control that both reduce mortality and increase liveweight;
(2) interventions in pathogen reduction that increase food safety and thus increase income

For simplicity, we allow these parameters to be adjusted by different percentages to reflect the expected change in benefits and costs

I 56 📘		520
	156	

Application

Four scenarios

- 1. An animal health scenario to reflect the adoption of GAHP as a means of promoting better animal health. Assumes an increase of costs of 10%, against an increase in productivity of 20% and a reduction of animal mortality of 50%;
- 2. Scenario (1) under a scenario in which costs rise by 5% instead of 10%
- 3. Impacts of a 20% rise in slaughterhouse margins against a 20% in increase in income associated with public health.
- 4. Scenario (3) under a scenario in which incomes rise 10% instead of 20%

Scenarios run over 20 years, with interventions taking place in year 3.

Consumer prices under GAHP scenarios

Meat sales under GAHP scenarios

Consumer prices under food safety scenarios

Meat sales under food safety scenarios

Extensions

Next steps

- Mainstreaming systems approaches and systems thinking
- Improved modeling platforms and community of practice
- Improved data collection platforms the role of participatory processes and group model building

Extensions

Group model building (GMB)

- A participatory process aimed at:
 - Identifying and prioritizing the key problems in the system
 - The causes of these problems
 - The consequences of these problems
- SD principles and language (stocks/flows/feedbacks) are used to facilitate this discussion
- Model development and construction based on this process
- New extensions (spatial GMB): see Rich, Rich, and Dizyee (2016)

(2) Geter of produceion only alles

and the

(mark)

Set THE

THE R.

(4) 1 ingresos a nivel de la finca

6) Intereses muy allos

Cacus/

APRI 1312015. CYSTERS

8 Uo hay Kojishi U control oli con onde
 3 No hay financiamilate prin conjor de somillas de printo
 (10 hay financiamilate printo conjor de somillas de printo
 (10 hay clieñal manejo sonitario

D Falsh de conhol y seguini ente de transporte de seche

3.3

(AD) + intermediano,

(14) Falta inclution de anmente catidad

Added value from systems approaches to animal health and food safety

- Improved information on the chain to improve the effectiveness of interventions and their sustainability
- A planning tool for future policy development
- A way to develop shared solutions in a participatory manner and a platform for joint learning
- A means to communicate chain-level needs to government, donors, etc. more effectively.